
Research Statement—Federico Mora (fmora@berkeley.edu)

Designing and implementing distributed systems is still an enormous task for software engineers.
Much of this challenge stems from the fact that bugs can arise from complex combinations of
machine failures and message interleavings that are difficult for humans to reason about manually
[Gabrielson 2019]. As distributed systems become increasingly critical infrastructure, engineers
will need more and more computational support to correctly build and deploy them.

Automated reasoning engines promise to be the computational support that engineers need.
These engines can solve tedious, mission-critical logic problems billions of times a day (see e.g.,
Rungta [2022]). In the domain of distributed systems specifically, these tools have helped find
bugs and prove the correctness of industrial systems (see e.g., Newcombe et al. [2015]).
Unfortunately, despite their power and flexibility, adoption of automated reasoning engines
remains low for one fundamental reason. Today, successful users must be experts in their
application domain and in automated reasoning—a rare combination. Specifically, users must be
able to precisely describe their problem in a formal language, like first-order logic, and know
enough about automated reasoning to make sure their encoded problem is practically solvable.1
My research focuses onmaking domain-specific automated reasoning practical.During

my Ph.D., I focused on the domain of distributed systems verification. The fundamental principle
behind mywork is that automated reasoning tools should be tailored to the needs of engineers and
not the other way around. To achieve this, I focus on making modeling—the process of encoding
into a formal language—easier; and improving the performance of solvers on the logical queries
generated by modeling languages in this domain.

1 DOMAIN-SPECIFIC LANGUAGE FOR FORMAL VERIFICATION
Modern programming languages provide software engineers with a choice of different
distributed systems programming paradigms. Two popular paradigms include the actor model,
supported natively by e.g., Erlang, Scala, and Rust; and the model of communicating sequential
processes, supported natively by e.g., Go. Today, engineers that want to formally verify their
distributed systems must first model their systems in formal languages that support neither of
these popular paradigms. For example, a software engineer working with the actor model will
likely turn to IVy [McMillan and Padon 2020], TLA+ [Lamport 1999], or Dafny [Leino 2010], for
formal verification. IVy works in the paradigm of synchronous reactive programs; TLA+ is
explicitly designed to not resemble any programming language [Lamport 2021]; and Dafny
targets imperative programs similar to those written in Java.

In our OOPSLA ’23 paper [Mora et al. 2023], we took a language for modelling communicating
state machines, called P, and added support for formal verification. P is more similar to the actor
model than any existing verification language, making it easier for engineers to model their
distributed systems. Before our work, P had support for explicit-state model checking (similar to
testing) and engineers inside Amazon were successfully using it to find bugs in real systems
[Desai 2023; Terry 2024]. Our work allows these same engineers to write proofs of
correctness in the modeling language they are already using. Writing proofs of correctness
is a hard job. Doing it in a language that is not meant for formal verification is even harder,
usually requiring more lemmas and complicated reasoning. Our main contribution was to extend
P with syntax, abstractions, and automation that make writing proofs easier.

The main challenge in verifying P programs is that it explicitly models message passing.
Proofs, therefore, have to consider the low-level details of single messages. To remedy this, we

1“We cannot expect all AWS users to be experts in formal methods, have the time to be trained in the use of formal methods
tools, or even be experts in the cloud domain” [Rungta 2022]. “This limits the reach of formal verification: scalability will
require teaching many more people to engineer proofs” [Dodds 2022]. “The full power of automated reasoning is not yet
available to everyone because today’s tools are either difficult to use or weak” [Cook 2019].

https://federico.morarocha.ca/


2 Research Statement—Federico Mora

provide users with language support for reasoning about sequences of logically related messages,
called message chains. Message chains are related to message sequence charts [ITU-T 2011] from
the software engineering community, and choreographic programming languages [Montesi
2014] from the programming languages community. Both message sequence charts and
choreographic programming offer developers a way to reason about explicit message passing but
with the context of how messages flow through the system in question. We use message chains
to bring these same ideas to formal verification.

We evaluated our verification framework by verifying systems from related work and two
systems inside Amazon. We found that, with message chains, proofs require a similar number of
lemmas than more abstract frameworks, verification time is comparable, and some lemmas can
be automatically learned using classic learning algorithms, like Angluin [1980]. Since publication,
we have invested significant engineering time to improve modular reasoning, add parallel
solving, and design a novel proof caching mechanism. These extensions increase scalability and
are supporting an exciting ongoing verification effort inside of Amazon today.

2 SEMI-AUTOMATED FORMAL MODELING
Even with a domain-specific language (DSL), formally modeling distributed systems can be
tedious. In fact, a DSL could make modeling more challenging if users need to learn the target
language from scratch, or modern code intelligence tools, like LLM-based coding assistants,
perform poorly on the target language. The latter case is common: LLMs struggle to generate
code in low-resource programming languages, like DSLs for formal modeling. In our NeurIPS ’24
paper [Mora et al. 2024], we present a neuro-symbolic tool that makes it possible for LLMs
to generate programs in languages that are not represented in their training data.

The first key idea behind our approach comes from natural programming elicitation, a kind of
study that helps programming language designers understand how programmers naturally
approach problems from a given programming domain [Myers et al. 2004]. Programming
language designers use the results of these studies to create languages that are aligned with the
expectations of users, leading to less programming friction and more effective developers. We
borrow this idea for the setting where LLMs are the “users.” Akin to uncovering what human
users find natural for a given domain, we uncover what LLMs find “natural.” Specifically, our first
insight is to embrace LLM’s tendencies and design an intermediate language that aligns with the
LLM’s output distribution for tasks in our domain.

Our first key idea makes it possible for LLMs to generate reasonable programs but it presents a
new challenge: different languages have different features, like type systems, that make
translation difficult. The second key idea behind our approach is to use an automated reasoning
engine—a MAX-SMT solver in this case—to identify the minimal set of locations in the
intermediate program that prevent a correct translation to the target language. We then repair
these locations using a combination of deductive techniques and LLM calls, repeating the process
as necessary. This symbolic component guarantees that generated programs pass all
compiler checks, including type checking, for the target DSL.

We implemented a prototype of our approach in a tool called Eudoxus. Eudoxus translates
natural language text into UCLID5 programs—a formal modeling language and verification
framework whose development I help lead [Polgreen et al. 2022]. UCLID5 is used in a number of
verification projects and it is the backend for our P verification framework. In our NeurIPS ’24
paper, we show that Eudoxus outperforms fine-tuning, self-repair, few-shot prompting, and
chain-of-thought prompting over test problems collected from three well-known textbooks.
Specifically, our tool correctly solved 33% of textbook problems while the next best approach
solved only 3%. We are currently extending this work with a focus on semantic correctness—the
current approach guarantees that output programs pass all compiler checks.



Research Statement—Federico Mora 3

3 FASTER DOMAIN-SPECIFIC AUTOMATED REASONING ENGINES
The P verification framework and our text-to-formal-model tool use automated reasoning
engines to answer satisfiability queries. For the P verifier, these questions ask “is there a
counterexample to induction?” For the text-to-formal-model tool, these queries ask “is my
intermediate program consistent?” Both sets of queries contain algebraic data types (ADTs),
which also appear in other distributed systems verification projects (see e.g., Zhang et al. [2024]).
In our AAAI ’24 paper [Shah et al. 2024], we presented a new automated reasoning engine, called
Algaroba, for answering queries with algebraic data types. We found Algaroba to be the fastest
solver available. Later, Algaroba won the quantifier-free algebraic data types track at the
Satisfiability Modulo Theories Competition [Bromberger et al. 2024].

Algaroba takes an eager approach to solving queries. Specifically, it takes a quantifier-free query
containing ADTs and translates it to a quantifier-free query without ADTs that can then be solved
by existing non-ADT solvers. Algaroba eliminates ADTs by replacing themwith uninterpreted sorts
and functions along with a finite number of quantifier-free axioms. The key technical challenges
with eagerly solving ADT queries is that, at first glance, this kind of translation seems like it should
require an unbounded number of axioms (e.g., lists can be arbitrarily long but no list is equal to
any of its sub-lists). Despite this, we proved that our finite translation is sound and complete.

Most other automated reasoning engines in this space take a lazy approach. In the lazy approach,
theory axioms are introduced as needed, instead of up front. Since Algaroba takes a fundamentally
different approach to existing tools, its performance profile is quite unique: Algaroba solves many
queries that no other solver succeeds on; and other solvers succeed on queries for which Algaroba
fails on. This phenomenon is common across SMT theories. The problem is that, for any given
query, it is hard to know ahead of time what solver will succeed.

In our FM ’21 paper [Mora et al. 2021], we defined three solving algorithms for satisfiability
queries over strings, and provided a fixed classifier for deciding when to use what algorithm. In
our SAT ’21 paper [Pimpalkhare et al. 2021], we generalized that work to an online learning
scheme that supports any logical theories. Our tool, called MedleySolver, takes a stream of
queries from a given domain. For each query, MedleySolver picks a solver to execute and learns
from the result. Over time, without requiring any human expertise, MedleySolver
automatically discovers the best solver for queries in the target domain. Specifically,
MedleySolver solves more queries than any individual solver using significantly less time.

4 FUTUREWORK AND VISION
Empowering distributed systems engineers with practical, domain-specific automated reasoning
engines will lead to faster and safer development of globally critical infrastructure. We have
taken significant steps towards this goal, but a truly transformational contribution will not come
from a single verification engine, semi-automated modeling tool, or solver. Rather, we need to
continuously build full-stack automated reasoning support for emerging, domain-specific
programming paradigms.

Example Emerging Concurrency Paradigm. Take for example the new concurrency model
supported by OCaml [Sivaramakrishnan et al. 2021]. This model, based on algebraic effects,
allows programmers to capture non-local control (like concurrency) and is increasingly gaining
popularity in programming language circles. Unfortunately, little work has been done on
practical automated reasoning about algebraic effects, so engineers have few choices when it
comes to tools for proving correctness of their programs. Theoretical work in this space has
focused on carving out fragments of effectful languages for which certain kinds of verification
problems are decidable (see e.g., Sekiyama and Unno [2024]). This is exciting work that could
greatly benefit from tailored automated reasoning engines—like Algaroba is for P—and new
verification abstractions—like message chains are for P. My research group will study emerging
programming models, like effectful programming, from the perspective of domain-specific



4 Research Statement—Federico Mora

automated reasoning. We will provide software engineers working in these domains with
practical tools for reasoning about their programs.

Semi-Automated Modeling Framework. For every new programming paradigm that we
support, we want to provide good modeling automation—Like Eudoxus does for UCLID5.
Similarly, any user of a domain-specific language should be able to reap the benefits of
automated code generation. Currently, however, our approach for code generation is largely
manual and requires engineering for every new target language, making it difficult to adopt. I
seek to remedy this by studying neuro-symbolic code generation from the perspective of
domain-specific automated reasoning. Just like existing frameworks for building domain-specific
languages do not require users to write compilers from scratch, we should be able to
automatically generate an effective neuro-symbolic code generation tool from a description of a
domain-specific language.

This language design perspective is also exciting because it opens up the possibility of
alternate user interfaces. Our first work only supports textual prompts, but programming, and
reasoning about programs, is not always done in text. For example, distributed systems are
frequently described through diagrams, like message sequence charts. Diagrams can describe
models, specifications, and lemmas. If we are able to support code generation and automated
modeling from alternate interfaces, engineers would be able to automatically convert their
documentation to formal artifacts, fundamentally changing how programs are verified today. My
research group will study how advances in machine learning, like vision language models, can
enable code generation from different input modalities that are relevant in a given domain.

Declarative Eager Solvers. All of my goals described above depend on fast solvers. The
problem is, we do not know what logical theories or fragments we will need to support. Even if
we did, we do not know what solver optimizations will be effective for queries generated by our
future tools and frameworks. This is true for the whole field of automated reasoning: the demand
for solvers is growing in often unpredictable directions. My research group will face this
challenge by studying how to automatically generate eager solvers, like Algaroba, from
declarative specifications. The key insight for this line of work is that the internal representation
and compiler-like passes of eager solvers can be modeled by terms and term rewriting rules,
respectively. In fact we are already working on re-implementing Algaroba using an equality
saturation tool [Willsey et al. 2021]. The key open question is how far we can push this approach,
both in terms of expressivity and practical performance. If successful, users will be able to
quickly generate new solvers to meet their domain-specific automated reasoning needs.



Research Statement—Federico Mora 5

REFERENCES
DanaAngluin. 1980. Finding patterns common to a set of strings. J. Comput. System Sci. (1980). https://doi.org/10.1016/0022-

0000(80)90041-0
Martin Bromberger, François Bobot, and Martin Jonáš. 2024. International Satisfiability Modulo Theories Competition.

https://smt-comp.github.io/2024/results/qf_datatypes-single-query/
Byron Cook. 2019. AWS Security Profile: Byron Cook, Director of the AWS Automated Reasoning Group. https://aws.

amazon.com/blogs/security/aws-security-profile-byron-cook-director-aws-automated-reasoning-group/
Ankush Desai. 2023. AWS re:Invent - Gain confidence in system correctness and resilience with formal methods. https:

//www.youtube.com/watch?v=FdXZXnkMDxs
Mike Dodds. 2022. Formally Verifying Industry Cryptography. IEEE Security & Privacy (2022). https://doi.

ieeecomputersociety.org/10.1109/MSEC.2022.3153035
Jacob Gabrielson. 2019. Challenges with distributed systems. https://aws.amazon.com/builders-library/challenges-with-

distributed-systems/
ITU-T. 2011. Message Sequence Chart (MSC). Recommendation Z.120. International Telecommunication Union. https:

//www.itu.int/rec/t-rec-z.120
Leslie Lamport. 1999. Specifying concurrent systems with TLA+. Calculational System Design (1999). https://lamport.

azurewebsites.net/pubs/lamport-spec-tla-plus.pdf
Leslie Lamport. 2021. A high-level view of TLA+. https://lamport.azurewebsites.net/tla/high-level-view.html
K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional correctness. In LPAR. https://www.andrew.

cmu.edu/course/18-330/2020s/reading/dafny.pdf
Kenneth L McMillan and Oded Padon. 2020. Ivy: a multi-modal verification tool for distributed algorithms. In CAV. https:

//doi.org/10.1007/978-3-030-53291-8_12
Fabrizio Montesi. 2014. Choreographic programming. IT-Universitetet i København. https://www.fabriziomontesi.com/

files/choreographic_programming.pdf
Federico Mora, Murphy Berzish, Mitja Kulczynski, Dirk Nowotka, and Vijay Ganesh. 2021. Z3str4: A Multi-armed String

Solver. In FM. https://doi.org/10.1007/978-3-030-90870-6_21
Federico Mora, Ankush Desai, Elizabeth Polgreen, and Sanjit A. Seshia. 2023. Message Chains for Distributed System

Verification. In OOPSLA. https://doi.org/10.1145/3622876
Federico Mora, Justin Wong, Haley Lepe, Sahil Bhatia, Karim Elmaaroufi, George Varghese, Joseph E. Gonzalez, Elizabeth

Polgreen, and Sanjit A. Seshia. 2024. Synthetic Programming Elicitation for Text-to-Code in Very Low-Resource
Programming and Formal Languages. In NeurIPS. https://arxiv.org/abs/2406.03636

Brad A. Myers, John F. Pane, and Amy J. Ko. 2004. Natural programming languages and environments. CACM (2004).
https://doi.org/10.1145/1015864.1015888

Chris Newcombe, Tim Rath, Fan Zhang, BogdanMunteanu, Marc Brooker, andMichael Deardeuff. 2015. HowAmazonWeb
Services uses formal methods. CACM (2015). https://www.amazon.science/publications/how-amazon-web-services-
uses-formal-methods

Nikhil Pimpalkhare, Federico Mora, Elizabeth Polgreen, and Sanjit A. Seshia. 2021. MedleySolver: Online SMT Algorithm
Selection. In SAT. https://doi.org/10.1007/978-3-030-80223-3_31

Elizabeth Polgreen, Kevin Cheang, Pranav Gaddamadugu, Adwait Godbole, Kevin Laeufer, Shaokai Lin, Yatin Manerkar,
Federico Mora, and Sanjit A. Seshia. 2022. UCLID5: Multi-Modal Formal Modeling, Verification, and Synthesis. In CAV.
https://doi.org/10.1007/978-3-031-13185-1_27

Neha Rungta. 2022. A billion SMT queries a day. In CAV. https://doi.org/10.1007/978-3-031-13185-1_1
Taro Sekiyama and Hiroshi Unno. 2024. Higher-Order Model Checking of Effect-Handling Programs with Answer-Type

Modification. In OOPSLA. https://doi.org/10.1145/3689805
Amar Shah, Federico Mora, and Sanjit A. Seshia. 2024. An Eager Satisfiability Modulo Theories Solver for Algebraic

Datatypes. In AAAI. https://ojs.aaai.org/index.php/AAAI/article/view/28649
KC Sivaramakrishnan, Stephen Dolan, LeoWhite, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting effect

handlers onto OCaml. In PLDI. https://doi.org/10.1145/3453483.3454039
Doug Terry. 2024. How do we sleep at night with confidence that our services are operating correctly?

https://www.linkedin.com/posts/doug-terry-08b2b68_an-unexpected-discovery-automated-reasoning-activity-
7258244396049997825-GlH3

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. Egg: Fast
and extensible equality saturation. In POPL. https://doi.org/10.1145/3434304

Tony Nuda Zhang, Travis Hance, Manos Kapritsos, Tej Chajed, and Bryan Parno. 2024. Inductive InvariantsThat Spark Joy:
Using Invariant Taxonomies to Streamline Distributed Protocol Proofs. In OSDI. https://www.usenix.org/conference/
osdi24/presentation/zhang-nuda

https://doi.org/10.1016/0022-0000(80)90041-0
https://doi.org/10.1016/0022-0000(80)90041-0
https://smt-comp.github.io/2024/results/qf_datatypes-single-query/
https://aws.amazon.com/blogs/security/aws-security-profile-byron-cook-director-aws-automated-reasoning-group/
https://aws.amazon.com/blogs/security/aws-security-profile-byron-cook-director-aws-automated-reasoning-group/
https://www.youtube.com/watch?v=FdXZXnkMDxs
https://www.youtube.com/watch?v=FdXZXnkMDxs
https://doi.ieeecomputersociety.org/10.1109/MSEC.2022.3153035
https://doi.ieeecomputersociety.org/10.1109/MSEC.2022.3153035
https://aws.amazon.com/builders-library/challenges-with-distributed-systems/
https://aws.amazon.com/builders-library/challenges-with-distributed-systems/
https://www.itu.int/rec/t-rec-z.120
https://www.itu.int/rec/t-rec-z.120
https://lamport.azurewebsites.net/pubs/lamport-spec-tla-plus.pdf
https://lamport.azurewebsites.net/pubs/lamport-spec-tla-plus.pdf
https://lamport.azurewebsites.net/tla/high-level-view.html
https://www.andrew.cmu.edu/course/18-330/2020s/reading/dafny.pdf
https://www.andrew.cmu.edu/course/18-330/2020s/reading/dafny.pdf
https://doi.org/10.1007/978-3-030-53291-8_12
https://doi.org/10.1007/978-3-030-53291-8_12
https://www.fabriziomontesi.com/files/choreographic_programming.pdf
https://www.fabriziomontesi.com/files/choreographic_programming.pdf
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1145/3622876
https://arxiv.org/abs/2406.03636
https://doi.org/10.1145/1015864.1015888
https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods
https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods
https://doi.org/10.1007/978-3-030-80223-3_31
https://doi.org/10.1007/978-3-031-13185-1_27
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1145/3689805
https://ojs.aaai.org/index.php/AAAI/article/view/28649
https://doi.org/10.1145/3453483.3454039
https://www.linkedin.com/posts/doug-terry-08b2b68_an-unexpected-discovery-automated-reasoning-activity-7258244396049997825-GlH3
https://www.linkedin.com/posts/doug-terry-08b2b68_an-unexpected-discovery-automated-reasoning-activity-7258244396049997825-GlH3
https://doi.org/10.1145/3434304
https://www.usenix.org/conference/osdi24/presentation/zhang-nuda
https://www.usenix.org/conference/osdi24/presentation/zhang-nuda

	1 Domain-Specific Language for Formal Verification
	2 Semi-Automated Formal Modeling
	3 Faster Domain-Specific Automated Reasoning Engines
	4 Future Work and Vision
	References

